
: ~. .. r-. .: ...

J. -. ~· I· ,.. x.' -~ \. ' ' ~Y;'. ·.'- ,- .~-,~.- .'-

./ ? .x..~ ' '~'x; ..~,~ ~ 'w '~" '''- '.- ' ' ...- : :~P~ER~T:>

:-~ ':,::C~C'.~:~ '-:, :: P'OA TO . :· RAi'._: WAV Q-:-,-:
;~~~~~' '
,,. T HRO E1

~~~~- .':--:: ~, _.~_ 7
~- , ,! '':..-'-,,'-- .~' ~- ,~..,.... ~ . , -

~·i
' # "- I'- :-n ~ :' ~ . ~'ll I ~~ ~,y''L 

" '
· 'x' -- ~ ,~ ../- ,.

- -[~- ~ o2" 
)

' " '2
'

~,>~~. ')/', :.'WAVES IPHROUGfi TIHR LO[~..R ATfiOSPUERE OF ¥~NUIS
;"v ~:./'l-i.~.~jI . Ricte (NAsR) Au. 1972 C L

'.,' "'i.-,.' 17B Unclas l-,"
.' ' .~ , , ' ,~, ~~~G3/017 /438]0 /: ;

- ,. _ ,,: - -, - ~ ,,'- / [ ~,,L, , .L 1 i---- 4..~> . ./:.-.~ /~.~~ / .,·· .- . _ . :

-' /;- 4:->: ' "",i- .'~·'" '':',... ',-.,''-''-- ..'...}:.'-'" '
·- "-~,"/x''~I > ,.,'' ~."--. '- ~';,. ; z.'-' :. "''~ 2' 

, 7 - .l
'

~Z .'-/-: , , .-. :.)' z .. ' x: '. ,.?- ., ~ ~ ~ . - '~'.. 2..~ ,

,_ .:i -;-
t:f'-,:- '.,'~

': i
'
-' ::" .:.:~'...:. !'~"' .--- ~'.:i - "- ->- '::,: ...''-·~ --. .- ,,,c~;-·~ :GODDAR SPC FIG H T ::CENTER---I~

i~~~~~~~~~~~~~~~~~~~~~~~~~~~. _.. .D-.,

.,..,~ ~ ~ - .) . -~ --f, ' -- _ /1,, · ~ /
": i -..t..-. L / '~.":-~- s>._.g

3;:;~~~~~~~ ~~~~~~~~~~~~~~~~ :. .,,_/-.., .' _"-_

, ~~ ~ ~ ~ ~ ~ ~~ ~er~ub · - , ·: :' - ~~ .. ..' -) / ~. .

-I ..... ~ , -'oimk If ' _,~rt ....

~~t~; ·e -· i~~~i I~~;·; · ~~-"~.plpqg P1'T~ ~~r_ .j J ~ ·~ ~~~ '~'>;,- -'-,-t'~ :~ -

: /.'(:i : .',<:- ,. --:'' x~-::
'
. ~ - N~tOAL¥EHNCA - ~', ." .':'--- ~ "' ':~ .'



X-730-72-323

PROPAGATION OF RADIO WAVES THROUGH THE LOWER

ATMOSPHERE OF VENUS

Kurt R. Richter*
Advanced Projects

August 1.972

*On leave of absence from the Institut fuer Hochfrequenztechnik of the University of Technology, Vienna, Austria.

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland



PROPAGATION OF RADIO WAVES THROUGH THE
LOWER ATMOSPHERE OF VENUS

Kurt R. Richter
Advanced Projects

ABSTRACT

A simplified model of the Venus atmosphere is developed

providing the loss factor profile of the atmosphere. With

this profile the atmospheric attenuation as it depends upon

the incidence angle is calculated for wavelengths between 2

cm and 20 cm. It is shown that the signal-to-noise ratios

for a real aperture radar, a synthetic aperture radar, and

communication links between a satellite and a landing probe

achieve maximum values by the proper choice of the wave-

lengths. Furthermore, it turns out that the wavelength

dependence is less crucial for the synthetic aperture radar

compared to the other cases.
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PROPAGATION OF RADIO WAVES THROUGH THE LOWER'
ATMOSPHERE OF VENUS

INTRODUCTION

Knowledge on the atmosphere of Venus has increased rapidly in the last

decade. Reasons for this development have been improved measurements of the

brightness temperature and radar reflections of the planet. The most important

facts, however, have been provided by planetary fly-by experiments of Mariner

2 and 5 and the Venera probe missions.

Results from these experiments confirmed the existence of a dense at-

mosphere consisting mainly of carbon dioxide at high temperature and pressure

at the surface. Furthermore, the results gave insight into the dependence of

these parameters upon the altitude above the surface of the planet.

Since this dense atmosphere obscures the planet so well almost nothing is

known about its surface features. Only radar mapping in the microwave region

seems to be promising to lift this veil as has been shown by earth based radar.

However, even near the subearth point the resolution of these radar systems is

too low to show detailed pictures of the planet's surface.

There is no doubt that in the future a spacecraft-borne microwave radar

orbiting the planet will be used to explore the structure of the surface.

This paper is concerned with the selection of the operating frequencies for

different radar systems and for communications from a probe situated on the

surface of the planet to a spacecraft, and vice versa. The operating frequency
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should provide a maximum signal-to-noise ratio taking into account the con-

straints in Aerospace Systems on the antenna.dimensions, the wavelength de-

pendence of the attenuation in the atmosphere of Venus, and the received noise

power radiated from the surface and the atmosphere. For this purpose a simpli-

fied model of the atmosphere will be used to calculate the antenna temperatures

for different systems.

MODEL OF THE LOWER ATMOSPHERE OF VENUS

In Figure 1 and Figure 2 the temperature and pressure profiles are based

on data given by AVDUEVSKY et al. [1971] , and FJELDBO et al. [1971].

These profiles represent a simplified model since they are smoothed curves.

Assuming a pure CO2 atmosphere according to KUZMIN and

VETUKHNOVSKAYA [1968] the refractivity profile N(y) may be calculated as

N(y) = K1 P(y)/T(y) (1)

Where K 1 = 0. 1345°K/atm, and P(y) and T(y) are pressure and tempera-

ture at an altitude y. N(y) is shown in Figure 3.

To obtain the temperature of an antenna looking down from space toward

the surface of the planet or looking into the space from the surface the profile of

the loss factor oa (y) must be known. Based on the results by HO et. al. [1966]

and MUHLEMAN [1970], the loss factor per km due to CO can be written as

(~ (y) _ 15.7 · 10-3
c o 1(Y) 7

2
(273) 5 · P2 (y)/T5 (y) km ' (2)

which shows a quadratic increase for decreasing wavelength.
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However, the attenuation measured by Mariner 5 at 13 cm wavelength in a

region below 52 km altitude above the surface can not be explained by a pure

CO2 -atmosphere. RICHTER [1972] has shown that the nearly constant loss of

3. 5 dB/km between 52 km and the superrefractive layer at 35 km measured by

Mariner 5 may originate from a two-component layer in this altitude range.

Assuming this layer consists of water droplets and watervapor, the losses

basically show the same wavelength dependence as a co2(y) does. The resulting

total loss factor o(y) may then be written as

c (y) = P(y)/X2 (3)

where the factor p (y) is independent upon the wavelength.

In Figure 4, the simplified model for exp [/ (y)] is shown. The dashed

line represents the losses due to CO 2 only, and the dots indicate the losses

measured by Mariner 5.

According to the Mariner 5 measurements the simplified model uses a

constant loss factor of 0. 59/X2 dB/km which is constant between 26 km and

52 km. Above and below this altitude range the losses show the altitude de-

pendence according to (2) assuming that in this part only CO2 is present. In this

model the attenuation above 52 km has been neglected.

Even though it is a rather coarse model for the attenuation in the atmos-

phere of Venus minor changes of the loss factor profile in the altitude range be-

tween 25 km and 52 km have only insignificant influence on the total attenuation

of electromagnetic waves propagating through the atmosphere.
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PLANAR MODEL

The total attenuation of electromagnetic waves propagating through a

lossy medium is dependent upon the path length which, in the case of the spheri-

cal model of Venus, is a function of the incidence angle Yo of the ray on a cer-

tain layer in the atmosphere. In this paper, this reference layer is chosen at

90 km above the surface where the refractive index n (n(y) = 1 + N(y) 10-6) may

be assumed to be unity (see Figure 5).

Radio waves in such an atmosphere propagate like light waves in a spheri-

cal glass lens with radially varying refractive index n(y). Therefore, Snell's

law

r. n(r) sin y (r) = const.

is applicable, where n(r) is the refractive index of a spherical layer of the lens

with the radius r at which the incidence angle is y (r). According to our model

it is

(R o + y) n (y) sin 8(y) = (R 0 + 90) sin Y . (4)

Here Ro = 6050 km (radius of the planet), y is the altitude above the surface in

km, and 7 (y) and T
O

are the incidence angles at y and 90 km altitude, respec-

tively. However, it can be shown from (4) that for Y0 < 70 ° the variation of

y (y) is so small that the spherical model can be dropped and a planar model

can be assumed. In this case, the incremental ray path length ds is

ds = dy/cosy0 . (5)
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Integration from the surface up to 90 km altitude for Yo = 700 yields a

deviation less than 2% between the total path lengths of the planar and the

spherical model, respectively. This error increases rapidly for 0o > 70 ° and

becomes infinite for 0o ~ 83°. At this incidence angle the ray is trapped in

the superrefractive layer (y ~ 35 km) and the spherical model theoretically

yields an infinitely long ray while integration of (5) still results in a finite ray

length. However, for the purposes of radar mapping and communication,, in-

cidence angles larger than 70° are of little interest. Therefore, in all further

investigations, the planar model and incidence angles Y0 <. 70 will be

considered.

ATMOSPHERIC ATTENUATION

An electromagnetic wave propagating through an atmosphere according to

the developed planar model (incidence angle yo ) is attenuated at the surface of

the planet by 1/L where

1/L = exp [-fa (y) dy/cos Yo] (6)
o

The upper limit, I, of the integral can be taken as 52 km because in the

particular model of the atmosphere there is no attenuation above an altitude of

52 km. According to (3) the one way attenuation 1/L may be written as

1/L exp = exp =
2

e (7)X2cos ¥o(7A) 3~y
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where

M = f3(y) dy . (8)
o

Evaluating the integral in (8) yields M = 17. 32 cm 2 so that the opacity or

optical thickness T (X, YO) (which is the positive exponent in (7)) is written as

17. 32
(xay0 ) -x2 cosyo (9)

The opacity calculated here is about 20% higher than the value calculated

by MUHLEMAN [1970] according to the higher pressure and temperature at the

surface and to the additional attenuation in the altitude range between 25 and 52 km.

In Figure 6 and Figure 7, the normalized one-way attenuation and the

normalized opacity respectively are shown. In order to obtain the attenuation

and/or opacity at a certain wavelength, the respective values from the figures

must be divided by X2 (Xin centimeter).

ANTENNA TEMPERATURE

The temperature of a receiving antenna from outside of the atmosphere

directed toward the surface of the planet can be calculated according to KUZMIN

and VETUKHNOVSKAYA [1968] from

TM52 ( ) /3 (y) dte
Ta = e T exp [- X2 coS7 _ T(y) y cos o ] dy

2+ (T1(y)es p(t) dt -2 o
+ (1-E) JT(y) PY (y ) e xp 1-~ d y

k2 cos 7 0 X2 cos 7 o
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where E is the emissivity of the surface and To is the surface temperature of

the planet. All other terms have-been defined before.

On the right hand side of (10), the first term represents the temperature

according to the noise received from the surface the second term the noise

directly received from the atmosphere and the last term the atmospheric radia-

tion as reflected from the surface.

.For an assumed emissivity of 0. 9, the antenna temperature TaI was

calculated by numerical integration for different wavelengths in the range be-

tween 2 cm and 20 cm. The resulting antenna temperatures are shown in

Figure 8 as functions of the incidence angle o0 .

A receiving antenna situated on the surface of the planet looking upward

receives only the noise power radiated downward by the atmosphere. The cor-

responding antenna temperature is

Tat 52 T(y) (y) exp [ i- (t) dt (11)a2 cos Y0' 2 COS Y d

The numerical results are shown in Figure 9.

It must be noted, however, 'that the antenna is assumed to have no side-

lobespointing toward the surface and the elevation angle is not less than 20 ° ,

which would result in a significant' increase of the antenna temperature. This

means ideal antennas providing very narrow beams (pencil beams) are con-

sidered. Due to these assumptions defocusing effects of the atmosphere have

been neglected.
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SIGNAL-TO-NOISE RATIO

Since the antenna temperatures for downlooking or uplooking antennas

are now known, the received noise power Pn in terms of a system noise tem-

perature T s can be expressed as

Pn = k Ts Bn (12a)

for a downlooking and as

Pn = k T 2 Bn (12b)

for an uplooking antenna, where k is Boltzmann's constant and B n is the noise

bandwidth of the predetection filter. The system noise temperatures are

Ts1 = Tai + TR (F n -1) (13a)

TS2 - Tat + TR (F n -1) (13b)

where TR = 290 0 K is the standard reference temperature and F n is the noise

factor. It can be easily seen that for large noise factors, changes of the antenna

noise temperatures are of minor influence.

In aerospace systems, however, there exist weight and dimension limita-

tions so that a certain effective antenna area A may not be exceeded. For this

area A the antenna gain decreases by X2 . On the other hand the attenuation of

the signal increases at shorter wavelengths so one can expect the existence of a

frequency where the signal-to-noise ratio becomes a maximum.

In the following, three modes of operation will be considered; namely, a

real aperture radar, a synthetic aperture radar, and a communication system
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between a probe at the surface and an orbiting spacecraft or an earth based

station (uplink) and/or vice versa (downlink).

Case 1: Real Aperture Radar

The signal-to-noise ratio. (S/N) of a pulse radar system may be written as

Pt AtAr fl ( yT o' )
S/N = (14)47rR 4 k B Ts (14)

where,
exp (-2M/X 2 cOSyo)

fl ( Y0 ) = 2 (15)

The numerator of fI (yo, X ) takes care of the attenuation in the atmosphere,

while X2 in the denominator originates from the relation between the gain and

effective area A of the transmitting antenna. Assuming an wavelength inde-

pendant term including the achievable transmitter power Pt, the effective areas

A
t

and Ar of the receiving and transmitting antennas, the noise bandwidth B of

the predetection filter, and the radar cross section a the wavelength dependence

of the signal-to-noise ratio is described by the function f 1 (-y0 , )/Tsi . This

function is shown in Figure 10, where the parameter is the incidence angle y0o 

One sees that an altimeter radar (y
o

= 0) should be operated at a wavelength

X = 4.75 cm in order to obtain a maximum S/No At increasing incidence angles

To the optimum wavelength increases to X = 10 cm at To = 70 ° . The units of

the ordinate are decibels according to the wavelength given in cm and the sys-

tem temperature in degrees Kelvin. The values of the system temperature are calcu-

lated from (13a) with the antenna temperatures from Figure 8 and assuming a

9



noise figure Fn = 6 db. Figure 10 also shows the remarkable decrease of the

signal-to-noise ratio at larger incidence angles. This decrease is even greater

when the angular dependence of the radar cross section a is taken into account.

However, by this fact the shape of the curves would not be influenced, so that

the optimum frequencies are still the same.

Case 2: Synthetic Aperture Radar

For a synthetic aperture radar, the radar cross section is dependant upon

the wavelength (SKOLNIK [1970] ) so that the signal-to-noise ratio results as

Par AtARP 6 r coS Yo f2(0 'A)
S/N = 3 (16)

8rkR
3

v

Here Pav is the average transmitter power, p the reflectivity of the

surface, 6 r the range resolution, k Boltzmann's constant, R the range, and v

the spacecraft velocity. In the wavelength dependent term f2 (y0 , x )/Ts1 the

system temperature is the same as in case 1 and

exp (-2M/X2 cosYo)
f2(' X =) x2 (17)

In Figure 11 it can be seen that the maximum signal-to-noise ratios occur

at longer wavelengths as they did in case 1. Furthermore, the decrease at

wavelengths longer than the optimum wavelength is less than it is for a real

aperture radar; also the decrease of the maximum due to increasing incidence

angles is less significant. This means that the signal-to-noise ratio is much

less sensitive to the operating frequency.

10



Case 3: Communication

Considering the range attenuation, the received signal power S is the

same for an uplink and a downlink. Namely,

Pt At Ar

: S R2 f3 ( A) (18)

where
exp (-M/X2 cos 0o )

f3 (1Y0 10 ) 2* (19)

The exponential function takes into account the one-way attenuation in the

atmosphere of the planet. The received noise power is calculated from (12a)

or (12b) for an uplink or downlink, respectively. In Figure 12 and Figure 13

the wavelength dependent term f 3 (y0 , X )/Ts is shown for both cases of com-

munication. It might be noticed that the shift of the optimum frequencies with

regard to the incidence angle is rather small compared to the radar cases.

However, since the slopes of the curves are very steep the appropriate fre-

quencies are within a narrow band.

CONCLUSION

For three different modes of operation, it has been shown that by a proper

choice of the operation frequency the signal-to-noise ratio has a maximum value

and decreases rapidly at wavelengths deviating from an optimum wavelength

which depends upon the incidence angle Y0 . For a synthetic aperture radar,

however, the decrease of the signal-to-noise ratio at longer wavelengths is not

significant.

11



Ignoring the frequency dependence of the background noise, a very good

estimate for the optimum frequencies can be achieved from the functions

f l (Y0 ), f 2 (T o , x ), and f 3 (y 0 , ). Optimum wavelengths obtained in this

way are shown in Figure 14 as a function of the incidence angle for all three

modes of operations.
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Figure 10. Wavelength depending term of the signal-to-noise ratio for a
real aperture radar (RAR).
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Figure 11. Wavelength depending term of the signal-to-noise ratio
for a synthetic aperture radar (SAR)
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